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Abstract

This paper addresses the idea of flow control in a two-user cognitive cooperative system in which the

secondary (cognitive) user is expected to cooperate with the primary user during the time slots in which they

are not operating simultaneously. This type of network layer cooperation is in contrast with the traditional

notion of cognitive radio, in which the secondary user is required to relinquish the channel as soon as the

primary is detected. In the system under study, the primary user transmits whenever it has packets to transmit,

while the secondary user bases its transmission decisions on the primary user’s queue state. Additionally,

the secondary user is equipped with a flow controller that controls the amount of cooperation it provides to

the primary user. We characterize the stable-throughput region by taking into account the compound effects

of multi-packet reception as well as the cooperative relaying capability of the cognitive user.

I. INTRODUCTION

The traditional paradigm of cognitive radio communications allows for limited coexistence of users with

different priorities in the same channel. The higher priority users, usually called primary (or, licensed, in

commercial parlance), are allowed to access the spectrum at any time, while the secondary (lower priority)

users are usually required to transmit opportunistically by taking advantage of the idle periods of the primary

nodes. In contrast, this work addresses a class of cognitive shared channels, in which users of varying priority

are allowed to coexist and transmit in the presence of one another. This model is of particular interest to

the Department of Defense (DoD) spectrum management community. Our focus here is on the rate measure

called stable throughput (packets/slot) [1] that is especially meaningful and relevant for wireless networks.

It is defined for users that are not backlogged and receive bursty traffic, which is queued up at their buffers

while awaiting transmission, and therefore requires the queues to be stable. The exact definition of stability

used in this paper is provided later in Section II.

Earlier work by us [1], [2] as well as others [3], focused on the aspect of opportunistic cooperation at the

network layer, which takes advantage of the broadcast nature of the wireless medium. In these works, during

the time slots in which the secondary user is idle, it has a chance to capture the primary’s packets and then

cooperatively relay those packet to the intended destination. In such cognitive cooperative systems, especially

in scenarios where the direct channel on the primary link is weaker than the link from the primary to the

secondary transmitter, having packets relayed by the secondary would help to empty the primary queue, thus

creating better transmitting opportunities for the secondary, and increasing the stable throughput of both the

primary as well as the secondary node as compared to the non-cooperation case.

The main contribution of this work is that, we have introduced the notion of flow control at the secondary

(relay) node. Specifically, the secondary user is equipped with a flow controller that controls the amount of

cooperation it is willing to provide, by regulating the endogenous arrivals from the primary user so that all

the queues in the network remain stable. By characterizing the optimal operation of the flow controller, we

analyze the conditions under which the cognitive system should operate as a non-cooperative system, a full

cooperative system, or as a partial cooperative system, so as to maximize the stable throughput region.

Furthermore, we obtain the exact characterization of the stabile throughput region for the system with the

flow controller, as shown in Figure 1. The characterization of the stability region is known to be challenging
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Fig. 1. Network Model for the Cognitive Cooperative System

in such multi-access systems, because the queues of the users are coupled i.e., the service process of a queue

depends on the status of the other queues. We intend to utilize the stochastic dominance technique, which

is described in Section III, in order to bypass this difficulty.

The remainder of the paper is organized as follows. In Section II, we present the system model that

is used in the paper and detail the assumptions that are made. In Section III, we analyze the stability of

the cognitive cooperative system with the flow controller, and derive the complete stable-throughput region

based on the idea of stochastic dominance. Finally, we present our conclusions in Section IV.

II. SYSTEM MODEL

In this work, we consider the basic cognitive cooperative network with two source nodes (s1 and s2)

and one destination node (d) as shown in Figure 1. Time is slotted and packets arrive at each source node

independently according to a Bernoulli process with mean arrival rates of λi, i = 1, 2 (packets/slot) in each

time slot. Node s1 is the primary, or higher priority, user; it transmits a packet whenever its queue is non-

empty, independently of the actions of the secondary node s2. If the packet transmitted by s1 is decoded

successfully by destination d, the packet exits the network and therefore will be removed from the primary

queue. Node s2, being the secondary or the cognitive node, must act in a way that depends on the actions of

the primary node s1. Specifically, node s2 observes the queue length Q1 at s1 and if Q1 = 0, then s2 will

transmit with probability 1 if its own queue Q2 is non-empty. Otherwise, if Q1 6= 0, which means that node

s1 will transmit in the time-slot, s2 will transmit with probability p, resulting in concurrent transmissions.

The destination node d is assumed to be equipped with multi-user detection [4] so that it can simultaneously

decode packets from concurrent transmissions, albeit with a lesser probability than in the case of single

transmissions. This is captured in the multi packet reception (MPR) channel model, which is described in

detail in Section II-A.

The overall cooperation strategy is as follows: in the time slots that node s2 does not transmit, it has

a chance to capture those packets from s1 that are not successfully decoded by the destination node d.

Specifically, node s2 is equipped with a flow controller that regulates the rate with which these packets

are decoded and stored in s2’s buffer, by accepting incoming packets with probability pa. Once a packet

is received past the flow controller, it is s2’s responsibility to relay this packet to the destination, thereby,

allowing the packet to be removed from the primary queue. By controlling the value of pa, node s2 can

regulate the amount of cooperation it is willing to provide. In this paper, we analyze the landscape of pa that

maximizes the overall stable throughput region of the cognitive cooperative system. One can imagine that

node s2 maintains separate virtual queues for these endogenous packets from s1 as well as its own exogenous

packets that arrive at s2 with an average arrival rate of λ2 (packets/slot). However it has been shown in [3]
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that the choice of packet transmission at the secondary node does not affect the stable throughput region,

therefore we can let s2 maintain a single queue that is destined for d.

Following are the assumptions made in the paper, in order to facilitate the system model.

• The transmission of one packet takes a duration of exactly one time slot, and packets awaiting trans-

mission by each source si are stored in infinite-sized buffers.

• Receivers are equipped with multiuser detectors, so that they may decode packets successfully from

more than one transmitter at a time. Such an MPR model has been studied extensively, and is similar

to the model specified in [4]–[6].

• Nodes cannot transmit and receive at the same time. These transmission constraints are common in

network systems where nodes are equipped with single transceivers with omni-directional antennas,

that can only transmit one packet at a time, although, as technology advances, such restrictions can be

relaxed.

• Positive acknowledgments (ACKs) from the receivers are assumed to be broadcast instantaneously

and without error on a separate channel with negligible bandwidth. Therefore, the overhead due to

acknowledgments is not considered in this analysis. This simplification can be overcome by a detailed

analysis of the overhead caused by a realistic control-message exchange, but such an analysis would

not contribute toward the main goal of our paper.

• The secondary user knows instantaneously whether or not the primary user’s queue is empty. This can

also be achieved via a channel sensing mechanism.

A. Channel Model

The MPR channel model can be described as follows. Given a set M of source users that transmit

simultaneously, the probability that a destination node n decodes a packet from a source m, where m ∈ M,

is given by:

q
(n)
m|M = P [packet from node m is received at node n | users in node set M transmit].

In the two-user cognitive network shown in Figure 1, we are specifically interested in the following

reception probabilities:

q
(d)
1|1 , q

(d)
2|2 , q

(d)
1|1,2, q

(d)
2|1,2, q

(s2)
1|1 .

It should be noted that, reflecting the behavior of real channels, the probability that a packet transmitted

by a source si is decoded by the destination d given that only si transmits is larger than the corresponding

1|1 ≥ q
(d)
1|1,2, q

(d)
2|2 ≥ q

(d)
2|1,2probability given both s1 and s2 transmit simultaneously, i.e., q

(d)
, etc.

The MPR channel model used in this paper is a generalized form of the packet-erasure model, which is

known to capture reasonably well the behavior of the wireless channel. The reception probabilities q
(n)
m|M

that are part of the MPR model are not arbitrary quantities, but can, in fact, be derived based on the effects

of fading, attenuation and interference at the receivers.

In wireless environments, if the receiver is equipped with multiple matched filters and treats interference

as noise, the packet error probability can be maintained at an acceptable level, if the received signal-to-

interference and noise ratio (SINR) exceeds a certain threshold. Therefore, one can compute the reception

probabilities based on the probability q = P[SINR > θ].

B. Queue Stability

Let us denote by Qi
t the queue length at node si in time slot t. Then, Qi

t evolves according to,

Qt+1
i = [Qi

t − Yi
t]+ +Xi

t,
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where, Y t
i is the number of departures at si in slot t, Xi

t denotes the number of arrivals, and [x]+ = max(0, x).
Based on the definition in [7], a queue is said to be stable if

lim
t→∞

P[Qi
t < x] = F (x) and lim

x→∞
F (x) = 1.

For queues where the arrival and service processes are jointly strictly stationary and ergodic, Loynes’

theorem [8] states that the queue at node si is stable if and only if the average arrival rate λi is strictly less

than the average service rate denoted by µi, i.e., λi < µi. If λi > µi, the queue is unstable. We use this

definition of stability although there exist several similar variations of the stability notion, which in many

cases are equivalent.

A system is said to be stable if and only if all queues in the system are stable. The stable-throughput

region of the system is defined as the set of arrival rates λi, i = 1, 2, for which the system is stable.

III. STABILITY ANALYSIS

In this section, we derive the stable-throughput region of the cognitive cooperative network system S
described in Figure 1. Based on the system model described in Section II, the average service rates seen by

s1 and s2 are given by

µ1 = q
(d)
1|1 P[Q2 = 0] + q

(d)
1|1,2 P[Q2 6= 0]p+ q

(d)
1|1 P[Q2 6= 0](1 − p),

µ2 = q
(d)
2|2 P[Q1 = 0] + q

(d)
2|1,2 P[Q1 6= 0]p.

Since the mean service rates at s1 and s2 (i.e., µ1 and µ2) depend on each other’s queue size, these queues

are called interacting. It is well known that the analysis of interacting queues is intractable; consequently the

rates of the individual departure processes cannot be computed directly. In order to bypass this problem, we

utilize the idea of stochastic dominance [7], which has been employed before to analyze interacting queues.

We first construct an appropriate dominant system, which is a modification of the original system, that

ensures that the queue sizes in the dominant system are, at all times, at least as large as those of the original

system. Thus, the stability region of the new system “inner bounds” that of the original system. Furthermore,

in the new system the queues are decoupled (and consequently not interacting anymore), thereby permitting

the characterization of the stability region. Second, we prove that the dominant system and the original

system behave identically (i.e., are indistinguishable) at the boundary of the stability region, thereby causing

the inner bound to coincide with the stability region of the original system.

Let S ′ be the corresponding dominant system for the original system S . In the case of the dominant

system,

• If Q2 = 0, node s2 transmits a dummy packet with probability 1, when Q1 = 0
• If Q2 = 0, node s2 transmits a dummy packet with probability p, when Q1 6= 0,

i.e., user s2 behaves as if its queues were never empty, except it transmits dummy packets when no real

packets are in its queue. This achieves a constant average service rate to user s1 regardless of the state of

s2’s queue; consequently the two queues are now decoupled. All the other assumptions including channel

models, arrival and reception processes remain unaltered.

A. Analysis at the Primary Node s1

In the dominant system S ′, just as in the original system S , the arrival rate at s1 is given by λ1. The

service process at s1 depends on which of two possible actions occurs: (i) if node s2 transmits along with

s1 (which happens with probability p), then the service rate seen by s1 is q
(d)

; (ii) if node s2 remains idle1|1,2
when s1 transmits, any packet that is successful at either d or s2 is dropped from Q1, which happens with

probability (1− p).
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The service rate that s1 receives in case (ii) can be computed as follows: when s1 transmits a packet,

the probability that the packet is not successfully decoded by s2 is given by (1 − q
(s2)
1|1 pa), where pa is the

probability that the packet is allowed to reach s2 by the flow controller. The probability that the packet is

1|1 pa)(1− q
(d)
1|1not successful at either s2 or d can be computed as (1− q

(s2) ). Therefore, the service rate that

s1 receives in case (ii), which is the probability that the a packet transmitted by s1 is successfully decoded

either at s2 or d, is given by 1− (1− q
(s2)
1|1 pa)(1− q

(d)
1|1).

Hence, the average service rate seen by s1 is

µ1 = (q
(d)
1|1 + q

(s2)
1|1 pa − q

(d)
1|1q

(s2)
1|1 pa)(1− p) + q

(d)
1|1,2p.

Using Loynes’ theorem, queue Q1 will be stable if λ1 < µ1.

B. Analysis at the Secondary Node s2

The average arrival rate at s2 is given by the sum of the exogenous arrivals with a rate λ2 as well as the

endogenous arrivals from s1 with a rate of λ1→2, which remains to be calculated.

Packets from node s1 will arrive at s2 if the following events happen together:

• The queue Q1 6= 0 and therefore s1 transmits; this happens with probability λ1/µ1, as Q1 is a discrete-

time M/M/1 queue.

• Node s2 is silent; this happens with probability (1− p) in the dominant system S ′.

• Packets transmitted by s1 are unsuccessful at the destination d1 but are decoded successfully by s2
(this also implies that the flow controller allowed the packet to reach s2); this happens with probability

(1− q
(d)
1|1 1|1)q

(s2)pa.

The total arrival rate at s2 is therefore given by

λs2 = λ2 + λ1→2 = λ2 + P[Q1 6= 0](1 − p)(1− q
(d)
1|1)q

(s2)
1|1 pa

In order to compute the service rate at s2, we need to analyze its departure process in the dominant

system S ′, which results in one of two possible actions: either (a) Q1 6= 0 while s2 transmits, in which

case s2 transmits with probability p; (using the fact that s1’s queue in S ′ is a discrete-time M/M/1 queue,

Q1 = 0 with probability of (1−λ1/µ1)), or (b) Q1 = 0 while s2 transmits, in which case s2 transmits with

probability 1. When Q1 = 0, node s2 can achieve a reception probability of q
(d)
2|2

for its transmissions, while

that reception probability reduces to q
(d)
2|1,2 when Q1 6= 0. The average service rate of s2 is therefore

µ2 = q
(d)
2|2 P[Q1 = 0] + q

(d)
2|1,2 P[Q1 6= 0]p

= (1−
λ1

µ1
)q

(d)
2|2 +

λ1

µ1
q
(d)
2|1,2p.

Using Loynes’ theorem, the queue at s2 will be stable if and only if λ2 < µ2, and the cognitive network

is stable if queues at both s1 and s2 are stable. Therefore, after some simple algebra, the stability conditions

for the cognitive network for a fixed scheduling probability p can be written as

λ1 < (q
(d)
1|1 + q

(s2)
1|1 pa − q

(d)
1|1q

(s2)
1|1 pa)(1 − p) + q

(d)
1|1,2p, (1)

λ2 +
(1 − p)(1 − q

(d)
1|1)q

(s2)
1|1 pa − (q

(d)
2|1,2p− q

(d)
2|2)

(q
(d)
1|1 + q

(s2)
1|1 pa − q

(d)
1|1q

(s2)
1|1 pa)(1 − p) + q

(d)
1|1,2p

λ1 < q
(d)
2|2 . (2)

Based on the construction of the dominant system S ′, it is easy to see that the queue sizes of the dominant

system, for each sample path realization, are never less than those of the original system, provided they are

both initialized identically. This is because, in the dominant system, s2 transmits dummy packets even if it



Flow Control for Relay Traffic in 
Cognitive Cooperative Random Access 

UNCLASSIFIED/UNLIMITED 

6 - 6 STO-MP-IST-123 
UNCLASSIFIED/UNLIMITED 

does not have any packets of its own, and therefore interferes with s1 in all cases that it would in the original

system. Therefore, given λ1 < µ1, if for some λ2, the queue at s2 is stable in the dominant system, then

the corresponding queue in the original system must be stable; conversely, if for some λ2 in the dominant

system, the node s2 saturates (i.e., it always has a non-empty queue), then it will always have real packets to

transmit, and as long as s2 has a packet to transmit, the behavior of the dominant system is identical to that

of the original system (that is, if the dominant system is unstable, so is the original system). Therefore, we

can conclude that the original system and the dominant system are indistinguishable at the boundary points.

This is essentially the stochastic dominance argument presented in [7], and is applicable here as well.

Next, in order to understand the impact of the flow controller on the cognitive cooperative system S , we

have to find the value of pa that maximizes λ2. For this, we utilize the constrained optimization technique

similar to that used in [2], [5] i.e., we fix λ1 and maximize λ2 as p varies over [0, 1]. First, we replace λ1

by x and λ2 by y. The boundary of the stability region for fixed pa can now be written as,

y = q
(d)
2|2 −

(1− p)(1− q
(d)
1|1)q

(s2)
1|1 pa − (q

(d)
2|1,2p− q

(d)
2|2)

(q
(d)
1|1 + q

(s2)
1|1 pa − q

(d)
1|1q

(s2)
1|1 pa)(1 − p) + q

(d)
1|1,2p

x, (3)

for 0 ≤ x ≤ (q
(d)
1|1 + q

(s2)
1|1 pa − q

(d)
1|1q

(s2)
1|1 pa)(1 − p) + q

(d)
1|1,2p. (4)

In order to maximize y for a fixed value of x, we need to understand the relationship between y and pa.

Differentiating y with respect to pa gives

dy

dp
=

(1− p)(1− q
(d)
1|1)q

(s2)
1|1 pa

[

p(q
(d)
1|1,2 − q

(d)
2|1,2 + q

(d)
1|1)− (q

(d)
1|1 − q

(d)
2|2)

]

(

q
(d)
1|1 + q

(s2)
1|1 pa − q

(d)
1|1q

(s2)
1|1 pa)(1− p) + q

(d)
1|1,2p

)2 x; (5)

The following observations can be made from (5):

• If p >
q
(d)

1|1
−q

(d)

2|2

q
(d)

1|1,2
−q

(d)

2|1,2
+q

(d)

1|1

then dy
dpa

> 0, which means that y is an increasing function of pa, therefore,

p∗a = 1. The stability region for this case is given by

R2 =







(λ1, λ2) :
(1− p)(1− q

(d)
1|1)q

(s2)
1|1 − (q

(d)
2|1,2p− q

(d)
2|2)

(q
(d)
1|1 + q

(s2)
1|1 − q

(d)
1|1q

(s2)
1|1 )(1 − p) + q

(d)
1|1,2p

2|2λ1 + λ2 < q
(d)

,

for 0 ≤ λ1 < (q
(d)
1|1 + q

(s2)
1|1 − q

(d)
1|1q

(s2)
1|1 )(1− p) + q

(d)
1|1,2p

}

. (6)

This is the case in which the secondary user provides complete cooperation to the primary user.

• If p <
q
(d)

1|1
−q

(d)

2|2

q
(d)

1|1,2−q
(d)

2|1,2+q
(d)

1|1

then dy
dpa

< 0, which means that y is an decreasing function of pa, therefore,

p∗a = 0. By substituting p∗a = 0 in (1) and (2), the stability region for this case is given by

R1 =







(λ1, λ2) :
(q

(d)
2|2 − q

(d)
2|1,2p)

(q
(d)
1|1)(1 − p) + q

(d)
1|1,2p

λ1 + λ2 < q
(d)
2|2 , for 0 ≤ λ1 < (q

(d)
1|1)(1 − p) + q

(d)
1|1,2p







. (7)

This is equivalent to the case of no cooperation between the primary and the secondary users.

– For x <
{

(q
(d)
1|1 + q

(s2)
1|1 pa − q

(d)
1|1q

(s2)
1|1 pa)(1− p) + q

(d)
1|1,2p

}

but x >
{

(q
(d)
1|1)(1 − p) + q

(d)
1|1,2p

}

, it

follows from (1) that

p∗a =
x− q

(d)
1|1(1− p)− q

(d)
1|1,2p

q
(s2)
1|1 (1− q

(d)
1|1)(1 − p)

. (8)
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By substituting p∗a into (2), the stability region for this case can be found to be

R3 =

{

(λ1, λ2) : λ1 + λ2 < q
(d)
1|1

+ q
(d)
2|2

+ (q
(d)
1|1,2

+ q
(d)
2|1,2

− q
(d)
1|1

− q
(d)
2|2

)p,

for q
(d)
1|1(1− p) + q

(d)
1|1,2p ≤ λ1 ≤ (q

(d)
1|1 + q

(s2)
1|1 − q

(d)
1|1q

(s2)
1|1 )(1− p) + q

(d)
1|1,2p

}

. (9)

This is the case in which the secondary user provides partial cooperation to the primary user.

By allowing for this flexibility in terms of partial cooperation, it can be clearly seen that the stable

throughput region of this system is at least as large, and in many cases larger than the stable throughput

region that is achieved when the secondary user provides either full cooperation to the primary user, or no

cooperation at all.

IV. CONCLUSION

This paper characterizes the stable-throughput region of a two user cognitive shared channel, in which we

introduced the notion of a network level flow controller that controls the amount of cooperation provided to

the primary user from the secondary user. We assume that the receivers are equipped with MPR capability

and characterize the complete stability region for such a cognitive cooperative system by utilizing the idea

of stochastic dominance. We characterize the optimal operation of the flow controller and identify situations

under which the cognitive system transforms into one with no cooperation and full cooperation besides the

case of partial cooperation from the secondary user to the primary user. We also observe that such flexibility

in cooperation enabled by the flow controller results in a stable throughput region that is larger than or at

least equal to the system without the flow controller.
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